Learning Bayesian Prototype
نویسنده
چکیده
| Given a set of samples of an unknown probability distribution, we study the problem of constructing a good approxi-mative Bayesian network model of the probability distribution in question. This task can be viewed as a search problem, where the goal is to nd a maximal probability network model, given the data. In this work, we do not make an attempt to learn arbitrarily complex multi-connected Bayesian network structures, since such resulting models can be unsuitable for practical purposes due to the exponential amount of time required for the reasoning task. Instead, we restrict ourselves to a special class of simple tree-structured Bayesian networks called Bayesian prototype trees, for which a polynomial time algorithm for Bayesian reasoning exists. We show how the probability of a given Bayesian prototype tree model can be evaluated, given the data, and how this evaluation criterion can be used in a stochastic simulated annealing algorithm for searching the model space. The simulated annealing algorithm provably nds the maximal probability model, provided that a suf-cient amount of time is used.
منابع مشابه
The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification
We present the Bayesian Case Model (BCM), a general framework for Bayesian case-based reasoning (CBR) and prototype classification and clustering. BCM brings the intuitive power of CBR to a Bayesian generative framework. The BCM learns prototypes, the “quintessential” observations that best represent clusters in a dataset, by performing joint inference on cluster labels, prototypes and importan...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کامل